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A FUNCTIONAL CHARACTERIZATION 
OF CERTAIN MIXED VOLUMES 

BY 

W I L L I A M  J. F I R E Y  

ABSTRACT 

A function over the convex cone X. of convex bodies K in Euclidean n-space 
(where addition is vector addition, positive scalar multiplication is dilatation), 
which is linear over ~C., increasing with respect to set inclusion, and zero at point 
bodies must be a mixed volume V(K;K,p- 1; o-,..., o-._p). Here /(, taken 
p -  1 times, is in X. and o ' , . . . ,  tr._p are pairwise orthog~nal unit segments 
spanning the orthogonal complement of the affine hull of /~. 

Let X, denote  the class of all compact  convex sets (convex bodies) in 

Euclidean n-dimensional  space E". The topology in X, is that induced by the 

Hausdorff  metric. For non-negative ,~o, At and for K0, K~ in K,, the vector  sum 

)toKo + A~K, is the set of points A0x0+ ,X~x~, where x0 lies in Ko, x~ lies in K~; this 

vector sum is in X,. We write (x ,y)  for the inner product of x and y and 

II x II = V'(x, x). B signifies the unit ball II x II =< 1. Finally, by the attine hull of a set 

we mean that translate of a subspace which contains the set and has least 

dimension. 

This note characterizes certain functions over  ~ ,  as mixed volumes. To 

explain this, let V(K) signify the volume of K in X,. Then V()ttKl +..  • + A,K,) 
for )t, _-> 0, K~ in ~". exists and is a homogeneous  polynomial  in At , . . - ,  2~. of 

degree at most n. We write the coefficient of the product A~, . . . ,A,  as 

n! V ( K , . . . ,  K,) with the understanding that V(K1,..., K,), called the mixed 

volume of these convex bodies, is symmetric in all its arguments.  For details, see 

[3, pp. 38-41]. If K~ , . . . ,  Kq, all equal K~, Kq,+t, • • ", Kq2 all equal K~ and so on, 

then we write V ( K , . . . , K . )  as V(K'L, qt;. . .  ;K',q,). Here  q , + . . . +  q, = n 

and we suppress any qj which equals one. Here  is the main result. 
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THEOREM. Assume that ~ is a real-valued function over ~ .  which is not 

identically zero. Then ~ satisfies: 

(i) ~ is linear: for non-negative ho, hl, 

~(AoKo + A,K,)= Ao~(Ko) + AI~(K,); 

(ii) ~ is increasing : Ko C_ K~ entails ~ (Ko) <- q~ (K0; 

(iii) ~( t )  = 0 when t is a point; 

if and only if there is a 1( in ~{n, unique to within a translation, such that 

(1) ~ ( K ) =  V ( K , K ; p  - 1 ; t r , ; . . . ;  o'._p), 

where ~rl,'" ", or,_p are segments of unit length, whose directions are mutually 

orthogonal and which span the orthogonal complement of the affine hull of  K.. 

PROOF. Suppose ~ has the form (1). Then it is known that ~ satisfies (i), (ii), 

(iii), see [3, pp. 40-41]. 

Before proving the sufficiency, we present some needed background. Let 

signify the set of continuous functions on the unit sphere f~ in E n ; we give c¢ the 

topology of uniform convergence on ~.  Extend each function F in ~¢ to f Over 

E"  by the rule 

f ( 0 ) = 0 ,  f ( x ) = l l x l l f ( x / l l x l l ) ,  for x # 0 .  

In c¢ single out the subset ~ ,  of those functions h whose extensions /~ are 

subadditive: 

g(x + y)_-< g(x)+ g(y). 

The subset ~ ,  is a cone in the linear space ~¢ and ~(, + ( -  ~ , )  is dense in qg, that 

is, for any e > 0 and any f in c~ there are functions ho, h~ in ~ .  for which 

max l f (u  ) - (ho(u ) - hi(u))  I < e. 

For a proof see [4, p. 10]. 

Next, there is a one-to-one correspondence between N, and K, such that, if h, 

hj in N, correspond to K, Kj in ~(,, then {hi} converges to h if and only if {Kj} 

converges to K. The correspondence is this: given K, h is the restriction to I1 of 

/7(x) = max(x, y); 
yEK 

given h, K is the intersection of all those half-spaces of points x for which 
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(x,u)<=h(u), uef~. 

In short/~ is the support function of K, see [3, pp. 26-28]. Note that Aoho+ )t~h,, 

for Ai => 0, corresponds to AoKo + A,K, when hj corresponds to Kj, j = 0, 1. 

We define the functional ~ over ~ .  by 

(2) ,~ (h) = ,p ( r ) .  

Now for the sufficiency proof. In (ii) choose Ko to be a point t in K~ and apply 

(iii). This shows ~o is non-negative. It is also translation invariant. To see this, set 

Ao=Al= 1, Kl=t  

in (i). In view of (iii) this gives 

(3) q~(Ko + t )=  ~o(Ko) 

as claimed. 
Next we prove q~ is continuous. Suppose {Kj} is an infinite sequence from K. 

which converges to K. First we take the case in which K is not degenerate, that 

is, has interior points, and so contains a ball 2QB, Q > 0, possibly after a suitable 

translation which cannot affect the values of ~. For all but a finite set of 

index-values j we must have K~ _D QB. From here on we omit those Kj for which 

this inclusion fails. The convergence of {Kj} to K implies there is a sequence {ej} 

of positive numbers, convergent to zero, such that 

K C Kj + ejB C_ (1 + eflo)K~, Kj C_ K + ejB C (1 + eflo)K. 

We apply (i), (ii) to obtain 

~(K)_- < (1 + ei/Q)~(K,) <-_ (1 + ej/p)~(K). 

It follows that {q~(Ki)} converges to ~(K). 

If K has no interior points, consider K + AB, A > 0, which does. The sequence 

{Kt} converges to K if and only if {Kj + AB} converges to K + AB. By our 

continuity result in the non-degenerate case and by (i), we have for each A > 0: 

~0(K + AB)= ~0(K)+ A~(B), ~o(r, + AB) = ~(Kj)+ A~(B); 

{~(K~) + Aq~(B)) converges to ~ ( K ) +  A~(B). Hence {~(Kj)} converges to ~(K) 

and the proof of the continuity of ~ is complete. 
Observe the implications of our results about ~ for the functional ff defined in 

(2): over ~,, ff is continuous and, for non-negative Ao, ;t~ 

ff(A0ho+ Alh,) = Aoff(ho) + Alq3(h~). 
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We extend q3 to c~ by the rules 

(h - h') = ff (h) - ff (h '), 

(!im (hi - h ;)) = l i m  ~ (h,  - h ;), 

for h, h', h~, h; all in Yt', and assuming {hi - h;} converges. It is easy to show that 

the extended functional ff is linear. Details of this sort of argument appear in [1, 

pp. 959-961]. Also, for non-negative f in c~ 

¢q)_->0. 

To see this last, we use (ii) and the fact that K C_ K'  for K, K '  in X~ if and only if 
h(u)<-_ h ' (u)  over fl for the corresponding h, h '  in ~ .  

As a positive linear functional over qg, ff has the representation 

¢(f) = So/(u)  (ctw(u ))/n, 

for some unique, non-negative measure t~, defined over the Borel sets ~ of fl. 

This is a consequence of the representation theorem of F. Riesz, see [6, pp. 

243-248]. In particular, if h in X~, is the support function of K in ~ ,  then 

from (2) 

~(K) = fn h(u)lz(dt°(u))/n" 

The support function of the translate K + t is h (u) + (t, u). This, together with 
the translation invariance of ~p shows that /x satisfies 

(4) fa (t, u)tx(&o(u))In = 0 

for all t in E ' .  Let L be the linear subspace of least dimension for which 
L O 1~ = 1)' contains the support of/z.  Write p for the dimension of L. By the 

hypothesis of the theorem p > 0. 

Any (p - 1)-dimensional subspace L '  in L determines two open hemispheres 

1)~, 1)2 on fl', separated by L '  O 1). We claim/~ (fl~),/~ (~2) are both positive. One 

of them certainly is since the support of/z does not lie in L' O fl. If/~ (1)1) were 

zero, we could choose t so that 

( t , u ) > 0  for u E f l 2 ,  
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and then we would have 

f <t, u> (dto(u)) > 0 

which contradicts (4). We may repeat the foregoing with fl~, f12 interchanged. 

This shows ~ is positive on every open hemisphere of fl'. 

A digression is necessary. For the moment  we work entirely in L, viewed as a 

Euclidean space E" ;  fl '  is the unit sphere centred at the origin, and we write ~ '  

for the Borel sets of f~'. By the area function of a convex b o d y / ¢  in L we mean 

that unique measure s ( / ( ;  to'), defined for all to' in ~ '  as follows. Let o- be the 

set of points on the boundary o f /~  which lie in support hyperplanes to / ( ,  whose 

outer normals fall in to'. The (p - 1)-dimensional measure of o" is s ( / ( ;  to'). I f / ¢  

is not degenerate,  then s ( / ( ;  oY) is positive on the open hemispheres of fl '  and 

fo, u)s(g; = o (t, dto '(u )) 

for all t in L. Conversely, any measure satisfying these two conditions is the area 

function of a convex body / ( ,  unique up to a translation, see [4, pp. 16--17], [2, pp. 

35-39]. 

This, with what we have proved about tt shows that there is a convex b o d y / ¢  

in L such that 

(5) s(g; to') = 

for to' in ~ ' ;  / (  is unique up to a translation in L. 

From here on we go back to E"  ; we write the area function of a convex body 

K as S(K; to), where to is in ~.  Just as mixed volumes arise as coefficients in the 

polynomial V(A~K~+...+A,K,,), so do we obtain mixed area functions 

S(K~,..., K,_~; to) as coefficients in the polynomial S(A,K, + . . .  + A._,K,_,; to) 

of degree n - 1 ;  of course these coefficients are measures over ~.  More 

precisely, for A, => 0, Kj in ~C, j = 1, 2 , . . . ,  n - 1, (n - 1)!S(K,, • •., K~_,; to) is the 

coefficient of the product A l ' '  • An in S(A,K,+ . . .+  A,-,Kn-t;to) with the 

understanding that S(K~,..., K~_~; to) is symmetric in K~, . . . ,  K~_,. As we did 

for mixed volumes, we write S(K'~, q~;.. ";K',-1, q,-1; to) if K~, . . . ,  Kq, all equal 

K'~, Kq,+~, • •., Kq2 all equal K '  and so on. Here  q~ + .- • + q,_~ = n - 1 and we 

suppress any qj which equals one. We remark that the mixed volume 

V(K, K~,..., K~_~) has the representation 

(6) V(K, K, , . . . ,  Kn-,) = f h(u)S(K,, . . . ,  K._,; dto(u))/n. 
, in  
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Two more facts: S(KI,...,K._~;to) satisfies (4) when substituted for /z; in 

S(K,, . . . ,  K,_~; to) we may replace any Kj by any one of its translates without 

altering the measure. For details see [4, pp. 21-25], [1, pp. 959-967]. 

This prepares us for the final part of the proof of the theorem. Let (r,, • •., o',_~ 

be segments of unit length whose directions are orthogonal in pairs and which 

span the orthogonal complement  Lt of L in the sense that o', + • • • + o'._p has 

relative interior points in some translate of LI. We claim 

(7) S(/(, p - 1; o '1; ' '  "; o-._p ; to) =/~ (to) 

over ~.  When (7) has been proved, in view of (6) and (1), the theorem follows. 

To prove (7) it suffices to show, first, that S(K,,p- 1; t r , ; . . . ;  tr,_p ; to) has its 

support in f~' as does /z, and second, that (7) holds when to is in ~ ' .  

The mixed volume V(K1," ", K,) is positive precisely when there are seg- 

ments tr'~, • • -, tr',, in K~, . . . ,  K, respectively, which span E". By (6) it follows that 

V(K;K, ,p-1;o ' l ; . . . ;o ,  p ) > 0  

if and only if K contains a segment in L. Put another way, 

(8) V(K; K,p - 1; or , ; . . . ;  or._,)--- 0 

if and only if K is in the span L~ of o'1, " ", o . - r  In computing the left side of (8) 

by means of (6), we may assume that the support function h(u) of K is 

non-negative over l) by translating K so as to contain the origin 0. But K is in L~ 

if and only if h(u) vanishes for u orthogonal to L1. In short, (8) holds precisely 

when h(u) vanishes over L. Thus the support of S(/(,  p - 1; o,;  • • .; o-,_p ; to) is in 

1"~' as claimed. 

Consider the support hyperplane I-I(u') to the convex body 

K --- A/~ + AjO'l + " • " + A.-po',, p,A >O, Aj ->0, 

with outer unit normal u'  in to' of ~ '. In the statements which follow we neglect 

translations; area and mixed area functions are translation-invariant. Since each 

segment trj is perpendicular to u', I I (u ' )N trj is try. Consequently l-l(u') meets K 

in the set 

n n(u ' ) )  + + . . .  + 

Next, since each o'~ has length one, is orthogonal to every other o', and is 

orthogonal to L, we find 

S(K; to') = (n - 1)!AP-'A~ . - .  A,_ps(g; to'). 
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We have used here the fact that the union over u'  in to' of the s e t s / (  f'l II(u'), 

u ' ~ t o ' ,  has area, as a set in L, equal to s( / ( ; to ' ) .  Because S (K; to )  is a 

monomial, it must equal 

(n - 1) !A"- 'A, . . .X, ,S(g ,p  - 1; or,;.. "; tr,_p ; to'). 

This, with our last equation and with (5) finishes the proof of (7) and of the 

theorem. 

The following remarks amplify the theorem. 

Clearly if in place of (ii) we assume only that ~0 is monotone under set 

inclusion, then this will include the possibility that it is -~0 which has the 

representation claimed in the theorem. Next, (i) and (iii) imply the translation- 

invariance (3) of ~0. However,  (i) and (3) imply (iii) and so we may substitute (3) 

for (iii). 

It is possible to find the subspace L and the convex body /~, used in the 

representation (1), more directly from ~0. The conditions on K for (8) to hold" 

show how to find L : take the orthogonal complement of the largest subspace L~, 

such that ~0(K)=0 whenever K is in L~. The support of S ( / ¢ , p - 1 ;  

t~l;" • "; t~._p ; to') is in fl'. Also the restriction of h ( u )  to L is the support function 

of the image K'  of K under orthogonal projection onto L. Hence for any K in Xn 

~ ( K )  = f h ( u ' ) S ( K , p  - 1; t r , ; . . . ;  tr~_p ; dto(u'))/n = ~o(K'). 
J t l  

Thus the range of q~(K) is determined by just those K in L. 

In this paragraph once again we work entirely in L, viewed as a Euclidean 

space E p. We write v(K) ,  v (K;  Y,,,p - 1) for the volume of K and the indicated 

mixed volume. In this notation 

(9) ~ (K)  = v(K;  K ,p  - 1). 

Minkowski's inequality, [3, p. 91] reads 

vp(r; g ,p - v(r)vP-'(g),  

with equality if and only if K a n d / (  are homothetic. This, with (9), shows that 

min ~ ( K )  = g 
v(K)~I 

exists. Further, if we write K* for the unique convex body at which this 
minimum is attained, then /¢ = I~tP-1~K *. 

The final comment concerns a special case of the theorem. Suppose that, in 
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addition to (i), (ii), (iii), ~0 is rotation invariant, that is, if 97K is the image of K 

under the rotation 97 of E", then 

(10) ~0 (97K)= ~0 (K). 

Since 0 )  can replace (iii), our assumptions on q~ are now (i), (ii) and the 

following: ~0 is rigid motion invariant. In this case, there is a constant c ->_ 0 such 

that ~ (K) is c times the mean width W,_~(K). This result is due to Hadwiger [5, 

p. 213]; note that the meaning of linearity in (i) differs slightly from that of 

Hadwiger [5]. 

In 

~o(97K) = V(9?K; K,,p - 1; o- , ; . . . ;  cr._p) 

replace K,/~, cry, • •., o'._~ by 9?-~K, 9?-t/~, 97-~o'~, • •., 97-~o-,_p. This does not 

change the value of the mixed volume [3, p. 40] and, with (10), gives 

~ ( K )  = V(K;  9?- 'g ,p  - 1; 9 7 - ' a , ; - . . ;  9?-'cr,_~) 

over X, and for all 9?. By our t heo rem, / (  is unique to within a translation and so 

/ (  = 97/( for all ~t. Hence p = n a n d / ~  is a ball oB;  the special mixed volume 

V ( K ; B , n - 1 )  is W,-I(B).  This proves Hadwiger 's theorem with c =  

2Q"-'/V(B). 
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